

ul. Filtrowa 1

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-15/0323 of 01/06/2015

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant(s)

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T

Bonded anchor with anchor rod made of galvanized steel or stainless steel for use in concrete

Qube Solutions Group S.à.r.l. 81, rue de Luxembourg L-4391 Pontpierre Luxembourg

QUBE Manufacturing Plant 1

22 pages including 3 Annexes which form an integral part of this Assessment

Guideline for European Technical Approval ETAG 001, Edition April 2013 "Metal anchors for use in concrete — Part 1: Anchors in general and Part 5: Bonded anchors", used as European Assessment Document (EAD)

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T are a bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M24 made of:

- galvanized carbon steel
- stainless steel,
- high corrosion resistant stainless steel,

with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The threaded rod is anchored by the bond between rod, mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: a one side 45° chamfer, a two sides 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

An illustration and the description of the products are given in Annex A1 to A4.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B1 to B10.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

The essential characteristic is detailed in the Annex C1 to C4.

3.1.2 Safety in case of fire (BWR 2)

No performance assessed.

3.1.3 Hygiene, health and the environment (BWR 3)

Regarding the dangerous substances clauses contained in this European Technical Assessment, there may be requirements applicable to the products falling within its

scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.1.4 Safety in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

3.1.5 Sustainable use of natural resources (BWR 7)

No performance assessed.

3.2 Methods used for the assessment

The assessment of fitness of the anchors for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the ETAG 001 "Metal anchors for use in concrete", Part 1: "Anchors in general" and Part 5: "Bonded anchors", on the basis of Option 1 and 7.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96 582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/20 11) given in the following table applies.

Product	Intend	ed use	Level or class	System
Metal anchors for use in concrete	structu	ng and/or supporting to concrete ral elements (which contributes to bility of the works) or heavy units	-	1

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 01/06/2015 by Instytut Techniki Budowlanej

Marcin M. Kruk, Dr. Eng.

Director of ITB

- 3 Version 1 rod with flat end with marking on h,
- 4 Version 2 rod with 45° cutted end with marking on h,
- 5 Version 3 rod with V shape end with marking on h,
- 1) Marking according to clause 2.1.2 of ETAG 001 – Part 5 Effective anchorage depth according to Table A1

Table A1: Anchor threaded rod dimensions

The state of the s					
Size	d	[mm]	h _{ef,min} [mm]	h _{ef,max} [mm]	
M8		8	60	160	
M10		10	70	200	
M12		12	80	240	
M16		16	100	320	
M20	•	20	120	400	
M24		24	145	480	

Q-MULTIFIX B15, Q-MULTIFIX B1	5 W and Q-MULTIFIX B15 T	Annex A2
Anchor rod types ar	nd dimensions	of European Technical Assessment ETA-15/0323

Tolo	 An-	Thomas		Irode
l ain	W /-	Innre	חפחבי	Irane

		Designation	
Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042	Stainless steel	High corrosion resistance stainless steel (HCR)
Threaded rod	Steel, property class 4.8 to 12.9, acc. to EN ISO 898-1	Material 1.4401, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506
Hexagon nut	Steel, property class 4 to 12, acc. to EN 20898-2; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506
Washer	Steel, acc. to EN ISO 7089; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; corresponding to anchor rod material	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; corresponding to anchor rod material

Commercial standard threaded rods (in the case of rods made of galvanized steel – standard rods with property class ≤ 8.8 only), with:

- material and mechanical properties according to Table A2,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004; the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

Table A3: Injection mortars

Product	Composition
Q-MULTIFIX B15 Q-MULTIFIX B15 W Q-MULTIFIX B15 T (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

Q-MULTIFIX B15, Q-MULTIFIX B	15 W and Q-MULTIFIX B15 T	Annex A3
Materia	als	of European Technical Assessment ETA-15/0323

SPECIFICATION OF INTENDED USE

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M24.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete: sizes from M8 to M24.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular immersion in seawater or the splash pools or atmosphere with extreme tunnels where de-icing materials are used).
- Elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

- Dry or wet concrete (use category 1): sizes from M8 to M24.
- Flooded holes with the exception of seawater (use category 2): sizes from M8 to M24.
- All the diameters may be used overhead: sizes from M8 to M24.
- The anchors are suitable for hammer drilled holes: sizes from M8 to M24.

Design methods:

EOTA Technical Report TR029 (September 2010) or CEN/TS 1992-4.

Q-MULTIFIX B15, Q-MULTIFIX B1	5 W and Q-MULTIFIX B15 T	Annex B1
Intended	use	of European Technical Assessment ETA-15/0323

	Table	B1:	Installation	data
--	-------	-----	--------------	------

					E Paris and the second		
Size		M8	M10	M12	M16	M20	M24
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26
Effective	h _{ef,min} [mm]	60	70	80	100	120	145
embedment depth	h _{ef,max} [mm]	160	200	240	320	400	480
Depth of the drilling hole	h₁ [mm]	h _{ef} + 5 mm					
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30 mm; ≥ 100 mm h _{ef} + 2d ₀					
Torque moment	T _{inst} [N·m]	10	20	40	80	130	200
Thickness to be $t_{\text{fix,min}} [\text{mm}]$		> 0					
fixed	t _{fix,max} [mm]	< 1500					
Minimum spacing	s _{min} [mm]	40	40	40	50	60	80
Minimum edge distance	c _{min} [mm]	40	40	40	50	60	80

Q-MULTIFIX B15, Q-MULTIFIX B1	5 W and Q-MULTIFIX B15 T	Annex B2
Installation	data	of European Technical Assessment ETA-15/0323

Table B2: Processing time and minimum curing time

Q-MULTIFIX B15 (standard version)						
Concrete temperature [C°]		Processing time [min.]	Minimum curing time ¹⁾ [min.]			
-10		105	1320			
-5		65	780			
0		45	420			
+5		25	90			
+10		16	60			
+15		11,5	45			
+20		7,5	40			
+25		5	35			
+30		3	30			
+35		2	25			
+40		1	20			

Q-MULTIF	ΧI	B15 W (version for winte	r season)
Concrete temperature [C°]		Processing time [min.]	Minimum curing time ¹⁾ [min.]
-20		120	1440
-15		90	1000
-10		60	600
-5	,	40	210
0		25	100
+5		15	70
+10		10	50
+15		7	35
+20		5	30

Q-MULTIFI)	(E	315 T (version for summ	er season)
Concrete temperature [C°]		Processing time [min.]	Minimum curing time ¹⁾ [min.]
+20		14	60
+25		11	50
+30		8	40
+35		6	30
+40		4	20
+45		3	20
+50		2	20

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum resin temperature for installation +5°C; maximum resin temperature for installation +30°C. For wet condition and flooded holes the curing time must be double.

Q-MULTIFIX B15, Q-MULTIFIX B	15 W and Q-MULTIFIX B15 T	Annex B3
Processing time a	nd curing time	of European Technical Assessment ETA-15/0323

Manual Blower pump: nominal dimensions Ø = 63 mm It is possible to use the mixer extension with the manual blower pump. However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension Sultable min pressure 6 bar at 6 m³/h Oil-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter 1) Position to insert the mixer extension Mixer extension (from 380 mm to 1000 mm) with nominal diameter 8 mm Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T Annex B4 of European **Technical Assessment** Cleaning tools (1) ETA-15/0323

Table B3: Standard brush diameter

Tł	readed rod diamet	er	M8	M10	M12	M16	M20	M24
d ₀	Nominal drill hole	[mm]	10	12	14	18	24	28
d _b	Brush diameter	[mm]	12	14	16	20	26	30

- 1 Steel bristles
- 2 Steel stem
- 3 Wood handle

Table B4: Special brush diameter (mechanical brush)

Thi	Threaded rod diameter				M20	M24
d ₀	Nominal drill hole	[mm]		18	24	28
d _b	Brush diameter	[mm]		20	26	30

- 1 Steel bristles
- 2 Steel stem
- 3 Threaded connection for drilling tool extension
- 4 Extension special brush
- 5 Drilling tool connection (SDS connection)

Q-MULTIFIX B15, Q-MULTIFIX B	15 W and Q-MULTIFIX B15 T	Annex B5
Cleaning to	ols (2)	of European Technical Assessment ETA-15/0323

Table B5: Mortar injection pumps

Pumps (injection guns)	Cartridges	Types
	300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	345 ml 300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Pneumatic
	825 ml	Manual (up to 300 mm anchorage depth)
7	825 ml	Pneumatic

Q-MULTIFIX B15, Q-MULTIFIX B	I5 W and Q-MULTIFIX B15 T	Annex B7
Tools for inje	ction (2)	of European Technical Assessment ETA-15/0323

1		using a rotary	the correct diameter and depth percussive machine (hammer perpendicularity of the hole operation.
2 4x 4x	4x	shall be cleane operations, by at followed again operations; before check (according	rom the drilling dust: the hole d by at least four blowing least four brushing operations by at least four blowing brushing clean the brush and to Annex B5) if the brush iient. For the blower tools see
3		For coaxial and sethe front cup, sor cartridge in the cartridges, unsor steel closing cli operations: - insert the mix extractor, - pull the extractor clip of the foil. Aft	side by side cartridge unscrew ew on the mixer and insert the injection gun. For the CIC ew the front cup, pull-out the p according to the following er in the eye of the plastic or to unhook the steel closing er that, screw on the mixer and the in the gun. Proper extrusion to Annex B7
NO OK		Before starting to part of the prod components are complete mixing product, obtained comes out from the	use the cartridge, eject a first uct, being sure that the two e completely mixed. The is reached only after that the by mixing the two component, ne mixer with an uniform color. System according to Annex B7.
if necessary use a for the injection (s	mixer extension ee Annex B6)	Fill the drilled ho drilled hole bottor air; remove the repressing-out; filling	le uniformly starting from the m, in order to avoid entrapped mixer slowly bit by bit during g the drill hole with a quantity nortar corresponding to 2/3 of
ATTENTION: Use the rods dry and free contaminants	oil and other	according to Anne twisting motion,	y the threaded rod, marked ex A2, slowly and with a slight removing excess of injection e rod. Observe the processing Annex B3.
7	g	After that attach th	ime according to Annex B3. e fixture and tighten the nut to e moment according to Annex
Q-MULTIFIX B15, Q-MULTIFIX B1	5 W and Q-MUL	TIFIX B15 T	Annex B8
Installation instruction up	to 300 mm dep	th	of European Technical Assessment ETA-15/0323

Size			M8	M10	M12	M16	M20	M24
Steel failure						10110	WIZO	14127
Steel failure with threaded rod grade 4.8								
Characteristic resistance	N _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]	1.0			50	30	141
Steel failure with threaded rod grade 5.8	7 Mo				٠,	00		
Characteristic resistance	$N_{Rk,s}$	[kN]	18	29	42	78	122	176
Partial safety factor	γMs	[-]				50	122	170
Steel failure with threaded rod grade 8.8	, , , , , ,				٠,	00		
Characteristic resistance	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]				50	100	202
Steel failure with threaded rod grade 10.	9				.,			
Characteristic resistance	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Partial safety factor	ν _{Me}	[-]				40		000
Steel failure with threaded rod grade 12.	9							
Characteristic resistance	$N_{Rk,s}$	[kN]	44	70	101	188	294	424
Partial safety factor	γмs	[-]				40		
Steel failure with stainless steel threaded	rod A4-70				.,			
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Partial safety factor	γMs	[-]			1,			
Steel failure with stainless steel threaded	rod A4-80				,			
Characteristic resistance	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γмs	[-]			1,0			
Steel failure with high corrosion resistant	steel grade 70							
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Partial safety factor	γMs	[-]		•	1,8	87		
Combined pull-out and concrete of	one failure in	non cracked	concrete	C20/25				
Characteristic bond resistance					40.0	40.0		
emperature range -40°C / +40°C 1)	T _{Rk,ucr}	[N/mm²]	16,0	12,0	12,0	12,0	9,5	9,5
Characteristic bond resistance	-	[N/mm ²]	11.0	0.5	0.5	0.5		
emperature range -40°C / +80°C 1)	T _{Rk,ucr}	[IN/IIIII]	11,0	8,5	8,5	8,5	7,0	7,0
Characteristic bond resistance	т	[N/mm ²]	6,0	4,5	4.5	4.5	4.0	4.0
emperature range -40°C / +120°C 1)	τ _{Rk,ucr}	[14/11111]	0,0	4,5	4,5	4,5	4,0	4,0
ncreasing factor for C30/37					1,			
ncreasing factor for C40/50	Ψc	[-]			1,2	23		
ncreasing factor for C50/60					1,3	30		
Splitting failure								
					lf h =			
			2,5	· h _{ef}	2,0	· h _{ef}	1,5 ·	h _{ef}
					If h _{min} < h	< 2 · h _{min}		
					1 1	1		
dge distance	$C_{cr,Nsp}$	[mm]			2 x h _{min}			
-	- 01,143p	[]			mun			
					h _{min} C	cr.No. C _{cr.Nsp.}		
					interpolat			
					if h ≥ 2	? ∙ h _{min}		
					C_{cr}	,Np		
pacing	S _{cr,Nsp}	[mm]			2 · C	or sp		
artial safety factor for combined	pull-out, concr	ete cone and	splitting	failure		СГ,ОР		
artial safety factors for in use			риссинд	Tallalo				
ategory 1 (γ_2 = 1,0 included)	2)				1,5	50		
artial safety factors for in use	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{2}$	[-]						
ategory 2 (γ_2 = 1,2 included)					1,8	80		
lote: Design method according to TR 02 See: Annex B1 ²⁾ In the absence of o	9 ther national regu	lation						
Q-MULTIFIX B15, Q-MUL	TIFIX B15 V	V and Q-M	ULTIFIX	B15 T		An	nex C1	
Characteristic re	sistance und		oads		-	Technica	uropea I Asses -15/032	smen

in non cracked concrete

ETA-15/0323

Steel failure with threaded not grade 4.8			M10	M12	M16	M20
Characteristic resistance						
Characteristic resistance						
Partial safety factor Yes F 1,50 1,50	Neka	[kN]	23	3/	62	00
Steel Fallure with threaded rod grade 5.8 Nat. (kN) 29 42 78 122			20			98
Characteristic resistance Nas. [kN] 29 42 78 122 78 122 78 122 78 125 150 15	TIVIS	LJ			,50	
Partial safety factor Partial safety factor Part	Neks	[kN]	29	12	70	100
Steel failure with threaded rod grade 8.8 No. (kN) 46 67 126 196 196 1,50	-		20			122
Column C	/ IVIS	LJ			,50	
Particle safety factor Steel failure with threaded rod grade 10.9 1,40	Neks	[kN]	46	67	126	106
Size Fallure with threaded rod grade 10.9	V	-	10			190
Columbia	7.00				,00	
Partial safety factor Ymax F 1,40	$N_{Rk,s}$	[kN]	58	84	157	2/15
Steel failure with threaded rod grade 12.9 Nisks KNN 70 101 188 294			00			243
Combined pull-out and concrete cone failure Interpolation Interpolatio	7100			<u>'</u>	,40	
Partial safety factor	$N_{Rk,s}$	[kN]	70	101	188	204
Steel failure with stainless steel threaded rod A4-70	γMs					204
Comparing Comp	od A4-70				, 10	
Partial safety factor Page		[kN]	41	59	110	171
Site failure with stainless steel threaded rod A4-80 haracteristic resistance NRs. [kN 46 67 126 196 Partial safety factor YMs [-] 1,60 Partial safety factor YMs [-] 1,87 Combined pull-out and concrete cone failure In cracked concrete C20/25 Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+40^{\circ}\text{C}^{\circ}$ $\tau_{Rk,cr}$	γMs					
Partial safety factor $\frac{N_{NR_c}}{C_{CI,NSp}}$ [F] 1,60 Selectifilitine with high corrosion resistant steel $\frac{N_{NR_c}}{276}$ [F] 1,60 Selectifilitine with high corrosion resistant steel $\frac{N_{NR_c}}{276}$ [KN] 41 59 110 171 171 171 171 171 171 171 171 171	od A4-80				,0.	
Partial safety factor $\frac{\gamma_{MS}}{C}$ [F] 1,60 $\frac{1}{1}$ 1,60 $\frac{1}{1}$ 2 $\frac{1}{1}$ 1,60 $\frac{1}{1}$ 2 $\frac{1}{1}$ 3	$N_{Rk,s}$	[kN]	46	67	126	196
title failure with high corrosion resistant steel grade 70 characteristic resistance $\frac{N_{Rk,c}}{N_{Rk}}$ [kN] 41 59 110 171 171 20mbined pull-out and concrete cone failure in cracked concrete C20/25 25 25 26 26 27 27 27 27 28 28 29 29 29 29 29 29 20 29 20 29 29 29 29 29 29 29 29 29 29 29 29 29	Ϋ́Ms	[-]				100
Partial safety factor 7 1 1 1 1 1 1 1 1 1	teel grade 70			<u> </u>	,	
Partial safety factor Yuse [-] 1,87		[kN]	41	59	110	171
Combined pull-out and concrete cone failure in cracked concrete C20/25 Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+40^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $9,0$ $9,0$ $9,0$ $9,0$ $6,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+80^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $6,5$ $6,5$ $6,5$ $6,5$ $4,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+80^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ Characteristic bond resistance emperature range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{RK,cr}}$ $[\text{N/mm}^2]$ $3,5$	γMs	[-]		1		
Caracteristic bond resistance emperature range $-40^{\circ}\text{C} / +40^{\circ}\text{C}$ $\tau_{\text{Rk},\text{cr}}$ $[\text{N/mm}^2]$ 9,0 9,0 9,0 6,5	ne failure in	cracked conci	rete C20/25			
emperature range $-40^{\circ}\text{C} / +40^{\circ}\text{C}^{-1}$ $\tau_{Rk,cr}$ $[N/mm^{\circ}]$ $9,0$ $9,0$ $9,0$ $6,5$ 0.5 characteristic bond resistance emperature range $-40^{\circ}\text{C} / +80^{\circ}\text{C}^{-1}$ $\tau_{Rk,cr}$ $[N/mm^{\circ}]$ $6,5$ $6,5$ $6,5$ $6,5$ $4,5$ 0.5 characteristic bond resistance emperature range $-40^{\circ}\text{C} / +80^{\circ}\text{C}^{-1}$ $\tau_{Rk,cr}$ $[N/mm^{\circ}]$ $3,5$ $3,5$ $3,5$ $3,5$ $2,5$ increasing factor for C30/37 $\tau_{Creasing}$ factor for C30/37 $\tau_{Creasing}$ factor for C40/50 $\tau_{Creasing}$ $\tau_{Creasing}$ factor for C50/60 $\tau_{Creasing}$ $\tau_{Creasing}$ factor for C50/60 $\tau_{Creasing}$						
emperature range $-40^{\circ}\text{C} / +80^{\circ}\text{C}^{-1}$ TRIL,cr [N/mm²] 6,5 6,5 6,5 6,5 4,5 haracteristic bond resistance emperature range $-40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1}$ TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C} / +120^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 3,5 2,5 hor range -40^{\circ}\text{C}^{-1} TRIL,cr [N/mm²] 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5	τ _{Rk,cr}	[N/mm ²]	9,0	9,0	9,0	6,5
The pacing state of the second resistance supportance range $-40^{\circ}\text{C}/+120^{\circ}\text{C}^{-1}$ $\tau_{\text{Rk,cr}}$ $\tau_$		2				
Corr, Nap pacing Series for Combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 2 ($\gamma_2 = 1.2$ included) Note: Design method according to TR 0.29 Note: Cor, Nap Processing the series of the seri	τ _{Rk,cr}	[N/mm²]	6,5	6,5	6,5	4,5
The control of the c		FA 1/ 27				
Increasing factor for C40/50 ψ_c [-] 1,23 ψ_c [-] 1,30 ψ_c [-] 1,5 ψ_c [-] 1,50 ψ_c [-] 1,80 ψ_c [-] 1,815 ψ_c [-]	τ _{Rk,cr}	[N/mm ⁻]	3,5	3,5	3,5	2,5
ncreasing factor for C40/50 ψ_c [-] $\frac{1,23}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,23}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,30}{1,30}$ $\frac{1,5 \cdot h_{ef}}{1,5 \cdot h_{ef}}$ $1,5 $				1	.12	
The state of the s	Ψc	[-]				
				1	,30	
				lf h	= h _{min}	
If $h_{min} < h < 2 \cdot h_{min}$ interpolate values Fig. 1.50 Fig			2.5 · h.,			15.h
Interpolate values interpolate			2,0 116			1,0 Tief
pacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 ($\gamma_2 = 1,0$ included) artial safety factors for in use ategory 2 ($\gamma_2 = 1,2$ included) Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation				I TIMIN 3 I	I Z IImin	
pacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 ($\gamma_2 = 1,0$ included) artial safety factors for in use ategory 2 ($\gamma_2 = 1,2$ included) Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation	C	[mm]				
pacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,Sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 ($\gamma_2 = 1,0$ included) artial safety factors for in use ategory 2 ($\gamma_2 = 1,2$ included) Note: Design method according to TR 029 1) See: Annex B1 $^{(2)}$ In the absence of other national regulation	Ocr,Nsp	[]		2 X II _{min}		
pacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,Sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 ($\gamma_2 = 1,0$ included) artial safety factors for in use ategory 2 ($\gamma_2 = 1,2$ included) Note: Design method according to TR 029 1) See: Annex B1 $^{(2)}$ In the absence of other national regulation				h _{min}		
pacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,Sp}$ Tartial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 (γ_2 = 1,0 included) artial safety factors for in use ategory 2 (γ_2 = 1,2 included) Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T						
pacing S _{cr,Nsp} [mm] 2 · C _{cr,sp} Partial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 (γ ₂ = 1,0 included) artial safety factors for in use ategory 2 (γ ₂ = 1,2 included) Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T						
artial safety factor for combined pull-out, concrete cone and splitting failure artial safety factors for in use ategory 1 (\gamma_2 = 1,0 \text{ included}) artial safety factors for in use ategory 2 (\gamma_2 = 1,2 \text{ included}) Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T				C	cr,Np	
artial safety factors for in use ategory 1 (γ_2 = 1,0 included) artial safety factors for in use ategory 2 (γ_2 = 1,2 included) Note: Design method according to TR 029 1) See: Annex B1 (2) In the absence of other national regulation 1,50 1,80 1,80					$C_{cr,sp}$	
artial safety factors for in use ategory 1 (γ_2 = 1,0 included) artial safety factors for in use ategory 2 (γ_2 = 1,2 included) Note: Design method according to TR 029 1) See: Annex B1 (2) In the absence of other national regulation 1,50 1,80 1,80	ull-out, conc	rete cone and	splitting failu	re		
And a step of the factor of the first see: Annex B1 2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T						
artial safety factors for in use ategory 2 (γ ₂ = 1,2 included) Note: Design method according to TR 029 1) See: Annex B1 (2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T	2)			1,	50	
Note: Design method according to TR 029 1) See: Annex B1 2) In the absence of other national regulation Q-MULTIFIX B15. Q-MIII TIFIX B15 W and Q-MIII TIFIX B15 T	$\gamma Mp = \gamma Mc = \gamma Msp^{-1}$	[-]				
O-MULTIFIX B15. Q-MULTIFIX B15 W and O-MULTIFIX B15 T				1,	80	
Q-MULTIFIX B15. Q-MULTIFIX B15 W and Q-MULTIFIX B15 T	29					
Q-MULTIFIX B15. Q-MULTIFIX B15 W and Q-MULTIFIX B15 T	ther national red	gulation				
Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T Annex C2		,				
Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T Annex C2						
Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T Annex C2						
Annex C2						
	ΓΙΕΙΧ R15 \	V and Ω-MI	II TIFIY R15	. T		
		ΥMs NRk,s YMs NRk,s YMs NRk,s YMs NRk,s YMs Od A4-70 NRk,s YMs Od A4-80 NRk,s YMs Tod A4-80 NRk,s YMs Cor,Nsp Cor,Nsp Will-out, conci	γMs [-] N _{Rk,s} [kN] γMs [-] N _{Rk,s} [kN] γMs [-] N _{Rk,s} [kN] γMs [-] rod A4-70 [kN] γMs [-] rod A4-70 [kN] γMs [-] rod A4-70 [kN] γMs [-] rod A4-80 [kN] γ [N/mm²] γ [N/mm²] γ [N/mm²] γ [N/mm²]	NRk,s [kN] 23	N _{RK,6} [kN] 23 34 Y _{M6} [-] 1 N _{RK,6} [kN] 29 42 Y _{M5} [-] 1 N _{RK,6} [kN] 46 67 Y _{M6} [-] 1 N _{RK,6} [kN] 58 84 Y _{M6} [-] 1 N _{RK,6} [kN] 70 101 Y _{M6} [-] 1 N _{RK,8} [kN] 41 59 Y _{M6} [-] 1 Od A4-80 N _{RK,6} [kN] 46 67 Y _{M6} [-] 1 od A4-80 N _{RK,6} [kN] 46 67 Y _{M6} [-] 1 one failure in cracked concrete C20/25 T _{RK,CT} [N/mm²] 9,0 9,0 T _{RK,CT} [N/mm²] 9,0 9,0 T _{RK,CT} [N/mm²] 3,5 3,5 V _C [-] 1 C _{Cr,Nsp} [mm] 2,5 · h _{ef} 2,0 If h _{min} < h C _{Cr,Nsp} [mm] 2 · h _{mon} interpolating failure V _{MP} = Y _{MG} = Y _{MSP} 20 1, 29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Technical Assessment ETA-15/0323

Characteristic resistance under tension loads in cracked concrete

Size			M8	M10	M12	M16	M20	M24
Steel failure with threaded rod grade 4.8			1010	10110	14112	IVITO	IVIZU	IVIZ
Characteristic resistance	$V_{Rk,s}$	[kN]	7	12	17	31	49	71
Partial safety factor 1)	γMs	[-]	<u>'</u>	12		.25	49	/ 1
Steel failure with threaded rod grade 5.8	TIMIS					,20		10000
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	00
Partial safety factor 1)		[-]	-	14			01	88
Steel failure with threaded rod grade 8.8	γMs				Since (Calculations)	,25		
Characteristic resistance	$V_{Rk,s}$	[kN]	1.6	00	0.4			
Partial safety factor 1)		[-]	15	23	34	63	98	141
Steel failure with threaded rod grade 10.9	γMs	[-]			1.	,25		
Characteristic resistance	V _{Rk.s}	TI/NIT	10	00	40	70	400	
Partial safety factor 1)		[kN]	18	29	42	78	122	176
Steel failure with threaded rod grade 12.9	γMs	[-]			1,	50		
Characteristic resistance	$V_{Rk,s}$	FLA II	00	0.5				
Partial safety factor 1)		[kN]	22	35	51	94	147	212
Steel failure with stainless steel threaded r	γ _{Ms}	[-]			1,	50		
Characteristic resistance		[LAN]	10	00	00			
Partial safety factor 1)	$V_{Rk,s}$	[kN]	13	20	29	55	86	124
Steel failure with stainless steel threaded r	γ _{Ms}	[-]		NASAN HIDEOLOGIC	1,	56		
Characteristic resistance	The second secon	FLA II	45	00				
Partial safety factor 1)	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Steel failure with high corrosion stainless	γ _{Ms}	[-]			1,	33		
Characteristic resistance		TI-NII	40	00	- 00			
Partial safety factor 1)	$V_{Rk,s}$	[kN]	13	20	29	55	86	124
artial safety lastor	γMs	[-]			1,	56		
Table C4: Characteristic values for	shear loads	s - steel fa	ailure	with le	ver arm	1		
Size			M8	M10	M12	M16	M20	M24
Steel failure with threaded rod grade 4.8			1010	.0110	WILE	IVI IO	IVIZU	IVIZ4
Characteristic resistance	M ⁰ _{Rk.s}	[Nm]	15	30	52	133	260	440
Partial safety factor 1)	γMs	[-]	13	30	1,2		260	449
Steel failure with threaded rod grade 5.8	/ MS	[-]			1,4	-0		

Size			M8	M10	M12	M16	M20	M24	
Steel failure with threaded rod grade 4.8								10121	
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449	
Partial safety factor 1)	γMs	[-]				,25	200	110	
Steel failure with threaded rod grade 5.8									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	
Partial safety factor 1)	γMs	[-]		<u> </u>		,25	024	301	
Steel failure with threaded rod grade 8.8	Tivio					,20			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	
Partial safety factor 1)	γMs	[-]				.25	010	000	
Steel failure with threaded rod grade 10.9									
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	37	75	131	333	649	1123	
Partial safety factor 1)	γMs	[-]	1,50						
Steel failure with threaded rod grade 12.9									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	779	1347	
Partial safety factor 1)	γMs	[-]			1.	50		1011	
Steel failure with stainless steel threaded	rod A4-70								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	
Partial safety factor 1)	γMs	[-]			1.	56			
Steel failure with stainless steel threaded	rod A4-80								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	
Partial safety factor 1)	νMe	[-]	1,33						
Steel failure with high corrosion resistant									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	
Partial safety factor 1)	γMs	[-]			1.	56			

¹⁾ In the absence of other national regulation

Q-MULTIFIX B15, Q-MULTIFIX B15	W and Q-MULTIFIX B15 T	Annex C3
Characteristic resistance เ in cracked and non-cra		of European Technical Assessment ETA-15/0323

Table C5: Characteristic values for shear loads - pry out and concrete edge failure

Size			M8	M10	M12	M16	M20	M24
Effective anchorage depth h _{ef}	min	[mm]	60	70	80	100	120	145
	max	[mm]	160	200	240	320	400	480
Pry out failure								
Factor	k	[-]	2	2	2	2	2	2
Partial safety factor 1)	γмр	[-]	1,5					
Concrete edge failure								
Partial safety factor 1)	γмс	[-]			1	.5	Maria Cardinati	
					-	, -		

¹⁾ In the absence of other national regulation

Table C6: Displacement under tension loads

Size				M8	M10	M12	M16	M20	M24
Characteristic displacement in non-cra	cked c	oncrete C20)/25 to C5	0/60 un	der tens	ion load	s		
Admissible service load*		F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4
Displacement		δ_{N0}	[mm]	0,30	0,30	0,35	0,35	0,35	0,40
		$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85	0,85	0,85

Size			M10	M12	M16	M20		
Characteristic displacement in cracked concrete C20/25 to C50/60 under tension loads								
Admissible service load*	F	[kN]	9,5	14,3	21,4	23,8		
Displacement	δ_{N0}	[mm]	0,50	0,50	0,70	0,60		
	$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85		

^{*} These values are suitable for each temperature range and categories specified in Annex B1

Table C7: Displacement under shear loads

Size				M8	M10	M12	M16	M20	M24
Characteristic displacement in cracked	and no	on-cracked	concrete	C20/25 t	to C50/6	0 under	shear lo	ads	
Admissible service load*		F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3
Displacement		δ_{V0}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0
		$\delta_{V^{\infty}}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0

^{*} These values are suitable for each temperature range and categories specified in Annex B1

Q-MULTIFIX B15, Q-MULTIFIX B15 W and Q-MULTIFIX B15 T

Characteristic resistance under shear loads.

Displacement under service loads: tension and shear loads

Annex C4

of European Technical Assessment ETA-15/0323